Abstract

This work explores the possibility of using a non-structured algorithm as a sideslip angle valuer: on the basis of a preliminary numerical analysis, a neural network was designed and trained with experimental signals of lateral acceleration, vehicle speed, yaw rate and steer angle. The network was applied to experimental data in order to verify its capability of self-adaptation to changes in friction coefficient and to provide accurate estimations for manoeuvres sensibly different from the ones used during the training stage. The simple architecture joined with an appropriate training set conferred good self-adaptation properties to the neural network which was able to provide satisfying estimation of side slip angle for a wide range of manoeuvres and different friction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.