Abstract

Vehicle evasive maneuvers or sudden lane changes pose stringent conditions on trajectory control, which require not only a desired path following but also a complete consideration of lateral forces and vehicle dynamic stability. Experienced drivers steer the vehicle on a desired path, as much as possible, without creating large lateral forces beyond the stability limits. Steering control systems have been developed to perform similar lane change or evasive maneuvers automatically but with limitations. A control method is developed to find desired trajectory automatically based on the defined design criteria using constrained optimization via collocation technique. The results are compared with two known suitable trajectories. The results show that the proposed control method produces peak lateral acceleration that are lower than the 5th order polynomial trajectory, and overall lateral accelerations that are lower than a comparable trapezoidal acceleration profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.