Abstract

Vehicle emissions are regarded as an important contributor to urban air pollution in China and most previous studies focused on megacities. However, the vehicle pollution in middle-sized cities becomes more severe due to the increasing vehicle population (VP) and lagged control policy. This study takes Langfang, a typical middle-sized city bordered by two megacities (Beijing and Tianjin), as the target domain to investigate vehicle emissions. The speed correction curves (SCC) are introduced to improve the vehicle emission factors (EF) simulation in official technical guidelines on emission inventory (GEI). A multi-year vehicle emission inventory (from 2011 to 2025) is developed in Langfang. From 2011 to 2017, the total vehicle emissions in Langfang decrease for carbon monoxide (CO), but increase for volatile organic compounds (VOCs), nitrogen oxides (NOx), and inhalable particles (PM10), respectively. From 2018 to 2025, the emissions would increase more rapidly in Langfang than in Beijing and Tianjin, indicating the middle-sized cities may become a significant contributor to air pollution in China. Four possible control policies, including VP constrained (VPC), public transportation promotion (PTP), new energy vehicles promotion (NEP), and freight transportation structure optimization (FTO) are evaluated. The most significant emissions reductions are observed under the FTO for CO, NOx, and PM10, and under the VPC for VOCs. The spatial distributions of vehicle emissions show a high order of heterogeneity, indicating that local conditions should be considered in policy formulation in addition to national consistency. More comprehensive policies should be implemented to mitigate the vehicle pollution in middle-sized cities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.