Abstract

The urban nitrogen (N) and carbon (C) cycles are substantially influenced by human activity. Alterations to these cycles include increased inputs from fossil fuel combustion and fertilizer use. The leaf chemistry of urban trees can be used to distinguish between these different N and C sources. Here, we evaluated relationships between urban vegetation and different N and C sources in street and residential trees in the Salt Lake Valley, Utah. We tested three hypotheses: 1) unfertilized street trees on high traffic density roads will have higher leaf %N, more enriched δ15N and more depleted δ13C than unfertilized street trees on low traffic density roads; 2) trees in high income residential neighborhoods will have higher leaf %N, more depleted δ15N and more enriched δ13C than trees in lower income neighborhoods; and 3) unfertilized street trees will have lower leaf %N, more enriched δ15N and more depleted δ13C than fertilized residential trees. Leaf δ15N was more enriched near high traffic density roads for one study species. However, street tree δ15N and δ13C were largely influenced by vehicle emissions from primary and secondary roads within 1000 m radius rather than the immediately adjacent road. Leaf δ13C was correlated with neighborhood income, although this relationship may be the result of variations in irrigation practices rather than variations in C sources. Finally, unfertilized trees in downtown Salt Lake had lower leaf %N, more enriched δ15N and more depleted δ13C than fertilized trees. These results highlight that urban trees can serve as biomonitors of the environment. Moreover, they emphasize that roads can have large spatial footprints and that the leaf chemistry of urban vegetation may be influenced by the spatial patterns in roads and road densities at the landscape scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call