Abstract

ABSTRACTHybrid Electric Vehicles (HEV) offer improved fuel efficiency compared to conventional vehicles at the expense of adding complexity and at times, reduced total power. As a result, HEV generally lack the dynamic performance that customers enjoy. To address this issue, the paper presents a HEV with electric All-Wheel-Drive capabilities via the use of torque vectoring electric rear axle drive (TVeRAD) to power the rear axle. The addition of TVeRAD to a front wheel drive HEV improves the total power output. To improve the handling characteristics of the vehicle, the TVeRAD provides torque vectoring at the rear axle. A bond graph model of the drivetrain is developed and used in co-simulation with CarSim. The paper proposes a control system which utilises control allocation to optimise tyre forces. The proposed control system is tested in the simulation environment with a high fidelity CarSim vehicle model. Simulation results show the control system is able to maximise vehicle longitudinal performance while avoiding tyre saturation on low mu surfaces. More importantly, the control system is able to track the desired yaw moment request on a high speed double lane change manoeuvre through the use of the TVeRAD to improve the handling characteristic of the vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.