Abstract
Over the past decade, vision-based vehicle detection techniques for road safety improvement have gained an increasing amount of attention. Unfortunately, the techniques suffer from robustness due to huge variability in vehicle shape (particularly for motorcycles), cluttered environment, various illumination conditions, and driving behavior. In this paper, we provide a comprehensive survey in a systematic approach about the state-of-the-art on-road vision-based vehicle detection and tracking systems for collision avoidance systems (CASs). This paper is structured based on a vehicle detection processes starting from sensor selection to vehicle detection and tracking. Techniques in each process/step are reviewed and analyzed individually. Two main contributions in this paper are the following: survey on motorcycle detection techniques and the sensor comparison in terms of cost and range parameters. Finally, the survey provides an optimal choice with a low cost and reliable CAS design in vehicle industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.