Abstract
The performance of existing vehicle detection algorithms are subject to many influences of environment, such as different lighting and weather conditions, moving vehicle shadows, etc. To solve these problems, a novel vehicle detection algorithm was proposed. Different from traditional methods, which use motion features to detect vehicles, the proposed method uses a representation of red colors to find the rear-lights regions of vehicles and uses symmetry measure function to analysis the symmetry of the color distribution, and figures out the accurate position of the symmetry axis. Then, the pair-edges are defined to reconstruct the integrated vehicle edges. Finally, a simple bounding box is fit to detected vehicle regions; the result is the location and dimensions of vehicles in the video. Experimental results show that the proposed method can be accurate and robust in detecting vehicles under different weather and lighting conditions, even at night. This method can also be used in many related applications, such as self-guided vehicles and driver assistance systems.KeywordsRGB color spacevehiclesymmetry detectionmorphological reconstruction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.