Abstract
Background subtraction method is widely used for vehicle detection. One of the issues in this method is to find a suitable and accurate background model that works in all conditions. Moreover, setting an appropriate threshold value to discriminate between the moving objects and stationary background plays a crucial role in increasing the detection performance. In this paper, an adaptive background model combined with an adaptive threshold method is proposed. It is demonstrated that the proposed method can efficiently differentiate between moving vehicles and background in urban roads under different weather conditions (i.e., normal, rainy, foggy, and snowy). Comparisons between the proposed method and other methods, such as the adaptive local threshold (ALT) and the three frame-differencing methods show the potential of our approach. The experimental results show that the proposed method increases the average recall value by 16.4% and the average precision value by 21.7% in comparison to the ALT method with a negligible increase in the processing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.