Abstract

Vehicle detection and classification are the most significant and challenging activities of an intelligent traffic monitoring system. Traditional methods are highly computationally expensive and also impose restrictions when the mode of data collection changes. This research proposes a new approach for vehicle detection and classification over aerial image sequences. The proposed model consists of five stages. All of the images are preprocessed in the first stage to reduce noise and raise the brightness level. The foreground items are then extracted from these images using segmentation. The segmented images are then passed onto the YOLOv8 algorithm to detect and locate vehicles in each image. The feature extraction phase is then applied to the detected vehicles. The extracted feature involves Scale Invariant Feature Transform (SIFT), Oriented FAST and Rotated BRIEF (ORB), and KAZE features. For classification, we used the Deep Belief Network (DBN) classifier. Based on classification, the experimental results across the three datasets produced better outcomes; the proposed model attained an accuracy of 95.6% over Vehicle Detection in Aerial Imagery (VEDAI) and 94.6% over Vehicle Aerial Imagery from a Drone (VAID) dataset, respectively. To compare our model with the other standard techniques, we have also drawn a comparative analysis with the latest techniques in the research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call