Abstract

Vehicle terrain mobility characteristics, provided by the powertrain and running gear, are realized in dynamic interactions between the wheels and terrain. Approaches to modeling and simulation of vehicle-terrain interaction and mobility characteristics as well as engineering approaches to design powertrain sub-systems together pre-determine a vehicle’s technical success or failure before it touches the ground. This article develops a vehicle mobility design technique, applicable to both manned and unmanned platforms, concerned with powertrain power conversion and realization in tire-terrain interactions. The modeling component is based on multi-drive-wheel vehicle longitudinal dynamics combined with terramechanics and powertrain characteristics. The approach advances the conventional dynamic factor by introducing the conjoint effect of the engine, transmission, and driveline system on vehicle traction and acceleration performance in terrain conditions where circumferential wheel forces and tire slippages may differ from each other. The vehicle design component of the proposed technique introduces drivetrain, driveline, and powertrain design factors that assess the influence of the drivetrain and driveline systems on traction, acceleration performance, power conversion, and realization at the wheels. The vehicle-design-for-mobility technique is completed by examining indices of mobility margins and performance. An analysis of several 8x8 armored personal carriers and 4x4 off-road vehicles illustrates the proposed technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call