Abstract

The mixed anion copper compound Cu(OH)F was studied in measurements of dc- and ac-magnetic susceptibility, static and pulsed field magnetization, specific heat, X-band electron magnetic resonance and muon-spin spectroscopy. In variance with its layered structure, the magnetic behavior shows no evidence of low-dimensionality. Cu(OH)F reaches short range static antiferromagnetic order at TN = 9.5–11.5 K and experiences the spin-flop transition at B ∼ 3.5 T. This behavior is in a sharp contrast with physical properties of earlier reported isostructural compound Cu(OH)Cl. The first principle calculations reveal highly competitive nature of ferromagnetic and antiferromagnetic superexchange interactions, the details being rather sensitive to choice of magnetic structure employed in the extraction of magnetic interaction. Rather broad anomaly in Cp(T) dependence at phase transition and smeared magnetization curve M(B) at low temperatures suggest static disorder at low temperatures however no frequency dependence...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call