Abstract
As a tumor surrogate, the mouse embryo presents as an excellent alternative for examining the binding of angiogenesis-targeting microbubbles and assessing the quantitative nature of molecular ultrasound. We establish the validity of this model by developing a robust method to study microbubble kinetic behavior and investigate the reproducibility of targeted binding in the murine embryo. Vascular endothelial growth factor receptor 2 (VEGFR2)-targeted (MBV), rat immunoglobulin G2 (IgG2) control antibody-targeted (MBC) and untargeted (MBU) microbubbles were introduced into vasculature of living mouse embryos. Non-linear contrast-specific and B-mode ultrasound imaging, performed at 21 MHz with a Vevo-2100 scanner, was used to collect basic perfusion parameters and contrast mean power ratios for all bubble types. We observed a twofold increase (p < 0.001) in contrast mean power ratios for MBV (4.14 ± 1.78) compared with those for MBC (1.95 ± 0.78) and MBU (1.79 ± 0.45). Targeted imaging of endogenous endothelial cell surface markers in mouse embryos is possible with labeled microbubbles. The mouse embryo thus presents as a versatile model for testing the performance of ultrasound molecular targeting, where further development of quantitative imaging techniques may enable rapid evaluations of biomarker expression in studies of vascular development, disease and angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.