Abstract

Neuronal and vascular cells share common chemical signals. Vascular endothelial growth factor (VEGF)-C and -D and their receptor VEGFR-3/Flt-4 mediate lymphangiogenesis, but they occur also in the brain. Quantitative RT-PCR of mouse brain tissues and cultivated cells showed that the VEGFR-3 gene is highest transcribed in postnatal brain and in glial precursor cells whereas VEGF-C and -D are variably produced by different neuronal and glial cells. In neurospheres (neural stem cells) VEGFR-3 was induced by differentiation with platelet-derived growth factor (PDGF). In functional studies with an A2B5- and nestin-positive, O4-negative murine glial precursor cell line, VEGF-C and -D stimulated phosphorylation of the kinases Erk1/2; this signal transduction was inhibited by UO126. Both peptides induced the proliferation of glial precursor cells which could be inhibited by UO126. Furthermore, VEGF-D considerably enhanced their migration into an open space in a wound-healing assay. These results show that VEGF-C/-D together with its receptor VEGFR-3 provides an auto-/paracrine growth and chemotactic system for glial precursors in the developing brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.