Abstract

In hypoxic/ischemic conditions, astrocytes are involved in neuroprotection and angiogenesis. Vascular endothelial growth factor (VEGF) induces angiogenesis and exhibits neuroprotective and neurotrophic properties. However, the role of placental growth factor (PlGF), a VEGF homolog, in these processes is unclear. Therefore, proliferation and survival studies were performed on PlGF knockout (PlGF-/-) and wild-type (PlGF+/+) mouse astrocytes. A significant increase in cell proliferation and survival to oxygen and glucose deprivation (OGD) was observed in PlGF-/- compared to PlGF+/+ astrocytes. Interestingly, no PlGF protein expression was detected in PlGF+/+ astrocytes and no changes in VEGF protein levels were observed between the two genotypes. Real-time PCR and immunocytochemistry showed over-expression of VEGF receptor-2 (VEGFR-2) in PlGF-/- compared with PlGF+/+ astrocytes. Confocal microscopy revealed nuclear, membrane, and cytoplasmic localization of VEGFR-2. In vivo over-expression of VEGFR-2 mRNA was also detected in PlGF-/- compared with PlGF+/+ astrocytes. Stimulation with VEGF165 resulted in increased proliferation in PlGF-/- compared with PlGF+/+ astrocytes. This effect was blocked by the VEGFR-2 antagonist, VEGF165b. The enhanced proliferation of PlGF-/- astrocytes correlated with increased phospho-extracellular-signal-regulated kinase-1/2 levels, while the resistance to OGD was independent of the phosphatidylinositol 3'-kinase/Akt pathway. These results suggest that VEGFR-2 mediates the enhanced proliferative/OGD resistant phenotype observed in PlGF-/- astrocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call