Abstract

A poor vascular supply of the fracture gap is a key factor for the development of atrophic non-unions. Mineral-coated microparticles (MCM) represent a sophisticated carrier system for the delivery of vascular endothelial growth factor (VEGF). Hence, we investigated whether VEGF-loaded MCM improve bone repair in non-unions. For this purpose, we analyzed binding and release kinetics of MCM for VEGF in vitro. Moreover, we applied VEGF-loaded or -unloaded MCM in a murine non-union model in vivo and studied the process of bone healing by means of biomechanical, radiological, histomorphometric, and Western blot techniques. MCM-free non-unions served as controls. The binding efficiency of MCM for VEGF was 46 ± 3% and the release profile revealed an initial minor burst release followed by a sustained release over a 50-day study period, thus, mimicking the physiological expression profile of VEGF during bone healing. In vivo, bone defects treated with VEGF-loaded MCM exhibited a higher bending stiffness, a higher fraction of bone volume/tissue volume and a larger callus area on days 14 and 70 when compared to the other groups. Western blot analyses on day 14 revealed a higher expression of VEGF, erythropoietin (EPO), and runt-related transcription factor 2, but not of EPO-receptor in bone defects treated with VEGF-loaded MCM. These findings demonstrate that the use of MCM for VEGF delivery shows great potential due to the ability to maintain protein stability and functionality in vivo. Moreover, the application of VEGF-loaded MCM represent a promising strategy for the treatment of non-unions. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.