Abstract
Vascular endothelial growth factor (VEGF)-A stimulates formation of new blood vessels (angiogenesis). This process includes migration of endothelial cells from the preexisting vessel toward the source of the growth factor. We show that VEGF-A-induced migration of porcine aortic endothelial cells expressing VEGF receptor-2 (VEGFR-2) is dependent on activation of phosphoinositide 3-kinase (PI3-kinase). There is no direct interaction between VEGF receptor-2 and PI3-kinase; instead PI3-kinase is activated downstream of focal adhesion kinase (FAK) in VEGF-A-stimulated cells. Thus, VEGF-A stimulation leads to complex formation between FAK and PI3-kinase and overexpression of dominant-negative FAK decreases VEGF-A-induced PI3-kinase activation. FAK activation by VEGF-A increases with increasing concentration of growth factor, without apparent collapse of the cytoskeleton, in contrast to the effect of platelet-derived growth factor. FAK activation is mediated via the C-terminal tail of VEGFR-2 and loss of VEGF-A-induced FAK activation in cells expressing mutant VEGFR-2 correlates with loss of migration capacity. These data show that VEGF-A-induced FAK and PI3-kinase activation are required for migration of cells expressing VEGFR-2, via a pathway independent of direct interaction with the receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.