Abstract

VEGF secretion into the tumor microenvironment by cancer cells regulates several oncogenic signaling pathways and cancer-regulated angiogenesis. VEGFR receptors are exclusively present on endothelial cells to maintain their biological homeostasis. The acquisition of unique VEGFR2 receptor and VEGFa in cervical cancer (CC) cells reflects VEGFa/VEGFR2 autocrine machinery. Given the critical role of VEGFR2 in endothelial cell proliferation, migration, and angiogenesis, we explored its function in CC epithelial-mesenchymal transition (EMT) and stemness. Here we report that VEGFR2 regulates cancer-induced angiogenesis and EMT-linked stemness in CC cells via AKT/GSK3β/β-catenin and Snail pathway. Receptor tyrosine kinase inhibitor (RTKi) of VEGFR, Pazopanib (PAZ), shows potential anti-VEGFR2 activity and inhibits VEGFa induced metastatic events such as migration, invasion, and anoikis resistance in CC cells. Similarly, PAZ also attenuates cancer-regulated angiogenesis by inhibiting VE-cadherin internalization in endothelial cells followed by inhibition of endothelial cell migration. Selective depletion of VEGFR2 ligand VEGFa in CC cells also attenuates EMT, metastatic events, and inhibition of cancer-induced angiogenesis. In addition, blocking of VEGFR2 signaling in CC cells via PAZ or shRNA alters the formation of cervical tumorspheres (TS) and their successive generation. Collectively, inhibition of functional VEGFa/VEGFR2 autocrine and paracrine axis ceases the cancer-promoting events in cervical cancer cells. Based on the finding in this study, this oncogenic pathways could be used as a potential therapeutic target in a clinical setting with conventional radio-chemotherapy to achieve synergistic killing of CC cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.