Abstract

ObjectiveThe aim of this research was to investigate the effect of vascular endothelial growth factor A (VEGFA)-overexpressing rat dental pulp stem cells (rDPSCs) combined with laminin-coated and yarn-encapsulated poly(l-lactide-co-glycolide) (PLGA) nerve guidance conduit (LC-YE-PLGA NGC) in repairing 10 mm facial nerve injury in rats. Study DesignrDPSCs isolated from rat mandibular central incisor were cultured and identified in vitro and further transfected with the lentiviral vectors (Lv-VEGFA). To investigate the role and mechanisms of VEGFA in neurogenic differentiation in vitro, semaxanib (SU5416), Cell Counting Kit-8 (CCK-8), real-time quantitative polymerase chain reaction (qPCR) and Western blotting were performed. Ten-millimeter facial nerve defect models in rats were established and bridged by LC-YE-PLGA NGCs. The repair effects were detected by transmission electron microscopy (TEM), compound muscle action potential (CMAP), immunohistochemistry and immunofluorescence. ResultsExtracted cells exhibited spindle-shaped morphology, presented typical markers (CD44+CD90+CD34−CD45−), and presented multidirectional differentiation potential. The DPSCs with VEGFA overexpression were constructed successfully. VEGFA enhanced the proliferation and neural differentiation ability of rDPSCs, and the expression of neuron-specific enolase (NSE) and βIII-tubulin was increased. However, these trends were reversed with the addition of SU5416. This suggests that VEGFA mediates the above effects mainly through vascular endothelial growth factor receptor 2 (VEGFR2) binding. The LC-YE-NGC basically meet the requirements of facial nerve repair. For the in vivo experiment, the CMAP latency period was shorter in DPSCS-VEGFA-NGC group in comparison with other experimental groups, while the amplitude was increased. Such functional recovery correlated well with an increase in histological improvement. Further study suggested that VEGFA-modified DPSCs could increase the myelin number, thickness and axon diameter of facial nerve. NSE, βIII-tubulin and S100 fluorescence intensity and immunohistochemical staining intensity were significantly enhanced. ConclusionVEGFA-modified rDPSCs combined with LC-YE-PLGA NGCs have certain advantages in the growth and functional recovery of facial nerves in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call