Abstract

Transplantation of cultured adipose-derived regenerative cells (ADRCs) into ischemic tissues promotes neovascularization and blood perfusion recovery. These effects are attenuated in diabetes patients. We examined the effects of hyperglycemia on the angiogenic capacity of ADRCs derived from Wistar rats both in vivo and in vitro. Cultured ADRCs were predominantly composed of CD90 positive cells; prevalence of CD90 positive cells was not affected by hyperglycemia. mRNA and protein levels of vascular endothelial growth factor (VEGF) were significantly decreased in ADRCs under hyperglycemic conditions independent of osmolarity, whereas mRNA levels of hepatocyte growth factor and fibroblast growth factor were unaffected. Since ADRCs express glucose transporter proteins GLUT1, 3 and 4, we examined the effects of the glucose transporter inhibitor phloretin on reactive oxygen species (ROS) and angiogenic factors. Phloretin decreased the glucose uptake rate, reduced ROS, and increased VEGF mRNA in ADRCs exposed to a hyperglycemic condition. In vivo transplantation of ADRCs cultured under hyperglycemic conditions into mouse ischemic limbs resulted in significantly decreased blood perfusion and capillary density in ischemic regions compared with transplantation of ADRCs cultured under normoglycemic conditions. These results suggest that hyperglycemia impaired VEGF production in ADRCs via an increase of ROS, impairing the angiogenic capacity of ADRCs transplanted into ischemic limbs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.