Abstract

Angiogenesis is crucial for the progression of colorectal carcinomas in which the bioavailability of Vascular Endothelial Growth Factor (VEGF) plays a major role. VEGF bioavailability is regulated by proteolytic release or cleavage. In colorectal cancer patients, we observed a significant correlation between circulating VEGF and tumour tissue Matrix Metalloproteinase-9 (MMP-9) levels but not with MMP-2. Therefore, we evaluated the role of MMP-9 in regulating VEGF bioavailability and subsequent angiogenesis in 3-dimensional human cell culture models. MMP-9 treatment released VEGF dose-dependently from HT29 colon carcinoma spheroids, comparable to heparitinase, a known mediator of VEGF release. Conditioned medium from human neutrophils, containing high amounts of active MMP-9, released VEGF comparable to recombinant MMP-9, in contrast to myofibroblast medium. MMP-9 treated spheroids showed decreased extracellular levels of heparan sulphates, required for VEGF binding to the matrix, whereas the levels in the medium were increased. Western blot analysis revealed that VEGF 165 is the major isoform released by MMP-9 treatment. In vitro experiments indicated that MMP-9 is not capable to cleave VEGF 165 into smaller isoforms, like plasmin does. These data suggested that MMP-9 mediates release rather than the cleavage of larger VEGF isoforms. Medium from MMP-9 treated HT29 spheroids induced endothelial cell sprouting in an angiogenesis assay, comparable to the effect of recombinant VEGF 165. Anti-VEGF antibody treatment resulted in a strongly reduced number of sprouts. In conclusion, we have shown that neutrophil-derived MMP-9 is able to release biologically active VEGF 165 from the ECM of colon cancer cells by the cleavage of heparan sulphates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.