Abstract

Vascular Endothelial Growth Factor (VEGF) is a pivotal endothelial cell mitogen that mediates both normal and pathological angiogenesis. Although expressed at very low levels in cells not undergoing vascularization, VEGF mRNA is transiently upregulated and stabilized by a variety of extracellular stimuli, and is persistently upregulated and stabilized in many human tumor cell lines (White et al., 1995). Here we demonstrate that oncogenic activation of tyrosine protein kinases and Ras proteins induce a 6-to 16-fold increase in the abundance of VEGF mRNA and a 3-to 5-fold increase in the stability of VEGF mRNA, suggesting that persistent activation of signaling pathways induced by these oncoproteins accounts for overexpression of VEGF in a significant fraction of human tumors. In addition to these oncoproteins, ultraviolet (U V) radiation upregulated and stabilized VEGF mRNA 15-and 5-fold, respectively. While the tyrosine kinase inhibitor, genistein, blocked VEGF upregulation by activated tyrosine protein kinases, and the Ras inhibitor, N-Acetyl-S-trans-farnesyl-l-cysteine (AFC), eliminated VEGF expression in cells transformed by v-Ras, neither agent blocked upregulation by hypoxia or UV radiation. These data argue that multiple divergent pathways upregulate and stabilize VEGF mRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.