Abstract

Theta and gamma rhythms in hippocampus are important to cognitive performance. The cognitive impairments following cerebral ischemia is linked with the dysfunction of theta and gamma oscillations. As the primary mechanism for learning and memory, synaptic plasticity is in connection with these neural oscillations. Although vascular endothelial growth factor (VEGF) is thought to protect synaptic function in the ischemia rats to relieve cognitive impairment, little has been done on its effect of neural dynamics with this process. The present study investigated whether the alternation of neural oscillations in the hippocampus of ischemia rats is one of the potential neuroprotective mechanisms of VEGF. Rats were treated with the intranasal administration of VEGF at 72h following chronic global cerebral ischemia procedure. Then local field potentials (LFPs) in hippocampal CA1 and CA3 regions were recorded and analyzed. Our results showed that VEGF can improve the power of theta and gamma rhythms in CA1 region after ischemia. Chronic global cerebral ischemia reduced the theta-gamma phase-amplitude coupling (PAC) not only within CA1 area but also in the pathway from CA3 to CA1, while VEGF alleviated the decreased coupling strength. Despite these notable differences, there were no obvious changes in the PAC within CA3 region. Surprisingly, the ischemia state did not affect the phase-phase interaction of hippocampus. In conclusion, our findings demonstrated that VEGF enhanced the theta-gamma PAC strength of CA3-CA1 pathway in ischemia rats, which may futher improve the information transmission within the hippocampus. These results illustrated the potential electrophysiologic mechanism of VEGF on cognitive improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.