Abstract

Vascular endothelial growth factor (VEGF) is a major positive angiogenic factor. Using a murine hindlimb ischemia model, we previously showed that fibroblast growth factor-2 (FGF-2) enhances the expression of endogenous VEGF which highly contribute to the therapeutic effect of FGF-2 gene transfer. Recently, placental growth factor (PlGF) has been shown to play an important role in angiogenesis. However, the molecular mechanism of endogenous PlGF during FGF-2-mediated angiogenesis has not been elucidated. Severe hindlimb ischemia stimulated PlGF expression that was more strongly enhanced by FGF-2 gene transfer, and a blockade of PlGF activity diminished the recovery of blood flow by FGF-2-mediated angiogenesis. The PlGF expression in cultured endothelial cells was significantly enhanced by VEGF stimulation, but not by FGF-2. The upregulation of endogenous PlGF expression was significantly decreased by the inhibition of endogenous VEGF activity in vivo. Subsequent signal inhibition experiments revealed that the PKC, MEK, and possibly NF-κB-related pathways were essential in stimulating PlGF expression with VEGF, while p70S6K is the regulator for VEGF expression. These results indicate that the FGF-2-mediated enhancement of PlGF expression was dependent on VEGF function, and the FGF-2/VEGF axis participates in FGF-2-mediated angiogenesis indirectly via PlGF as well as directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.