Abstract

Drought is a complex and recurrent natural disaster that can have devastating impacts on economies, societies, and ecosystems around the world. In light of climate change, the frequency, duration, and severity of drought events worldwide have increased, and extreme drought events have caused more severe and irreversible damage to terrestrial ecosystems. Therefore, estimating the resilience of different vegetation to drought events and vegetation’s response to damage is crucial to ensuring ecological security and guiding ecological restoration. Based on meteorological and remote-sensing datasets from 1982 to 2022, the spatial distribution characteristics and temporal variability of vegetation were identified in the Yellow River Basin (YRB), the dynamic changes and recurrence periods of typical drought events were clarified, and the driving effects of different drought types on vegetation were revealed. The results indicated that (1) during the research period, the standardized vegetation water-deficit index (SVWI) showed a downward trend in the YRB, with a 99.52% probability of abrupt seasonal changes in the SVWI occurring in January 2003; (2) the characteristic values of the grid trend Zs were −1.46 and 0.20 in winter and summer, respectively, indicating a significant downward trend in the winter SVWI; (3) the drought with the highest severity (6.48) occurred from September 1998 to February 1999, with a recurrence period of 8.54 years; and (4) the growth of vegetation was closely related to drought, and as the duration of drought increased, the sensitivity of vegetation to drought events gradually weakened. The research results provide a new perspective for identifying vegetation’s dynamic changes and responses to drought, which is of great significance in revealing the adaptability and potential influencing factors of vegetation in relation to climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.