Abstract

Soil extracellular enzyme stoichiometry (EES) is the essential predictor in nutrient status and resource limitation of soil microorganisms, whose metabolism has a vital role in biogeochemical cycling and ecosystem function. However, little is known about how N2-fixer tree species with different planting patterns affect soil nutrient resources in terms of extracellular enzyme activity (EEA) or EES within aggregates in degraded karst ecosystems. In this study, we evaluated soil EEA and EES related to carbon (C), nitrogen (N), and phosphorus (P) cycles across two eight-year-old pure plantations of legume species [Dalbergia odorifera T. Chen (PD) and Acrocarpus fraxinifolius Wight ex Arn. (PA)] and a mixed plantation of the two tree species listed above (MP). Meanwhile, a nearby undisturbed shrubland was used as a control (CK). We concluded that the activities of C-, N-, and P-acquiring enzyme increased to different degrees in the N2-fixer tree species stands (particularly in MP) compared to CK in all aggregates. Compared to CK, MP significantly increased by 39.0%, 54.0%, 39.3%, and 24.8% in total C-acquiring EEA, 41.1%, 60.5%, 47.8%, and 12.5% in total N-acquiring EEA, and 100.4%, 79.7%, 69.2%, and 56.4% in total P-acquiring EEA within >2 mm, 1–2 mm, 0.25–1 mm, and <0.25 mm aggregates, respectively. Furthermore, the logarithmic transformed ratio of C-, N-, and P-acquiring enzyme activities was 1.20:1.08:1, which deviated from the global ratio (1:1:1). Vector analysis of EEA showed that the vector length (VL) within aggregates was significantly lower than that of CK in all stands of N2-fixer species except PD; while in all treatments, vector angle (VA) was <45° for all aggregate sizes, except in MP, where VA reached 45° for <0.25 mm aggregate. These indicated soil microbes were limited by C and N together. However, MP significantly alleviated microbial C and N limitation than CK (p < 0.05). There were obvious positive relationships between enzyme C:N, C:P, and N:P ratios. VL was markedly negatively linked to VA. EES was markedly related to most soil nutrients and microbial biomass stoichiometry ratios. Changes in soil EEA and EES were primarily driven by available phosphorus (AP), microbial biomass carbon (MBC), soil C:N and MBN:MBP ratios. Together, our results demonstrate the influences after introducing N2-fixer tree species (particularly MP) for vegetation recovery on soil microbial nutrient limitation and ecological processes in aggregate level and will contribute to the development of ecological restoration practices and fertility management in degraded karst ecosystems of southwest China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call