Abstract

Temporal changes in the normalized difference vegetation index (NDVI) have been widely used in vegetation mapping due to the usefulness of NDVI data in distinguishing characteristic seasonal differences in the phenology of greenness of vegetation cover. Research has also shown that NDVI provides potential to derive meaningful metrics that describe ecosystem functions. In this paper, we have applied both unsupervised “k-means” classification and supervised minimum distance classification as derived from temporal changes in NDVI measured in 1997 along the North Eastern China Transect (NECT), and we have also utilized the same two classification methods together with NDVI-derived metrics, namely maximum NDVI, mean NDVI, NDVI amplitude, NDVI threshold, total length of growing season, fraction of growing season during greenup, rate of greenup, rate of senescence, integrated NDVI during the growing season, and integrated NDVI during greenup/integrated NDVI during senescence to map vegetation. The main objectives of this study are: (1) to test the relative performance of NDVI temporal profile metrics and NDVI-derived metrics for vegetation cover discrimination in NECT; (2) to test the relative performance of unsupervised (k-means) and supervised (minimum distance) methods for vegetation mapping; (3) to test the accuracy of the IGBP-DIS released land cover map for NECT; (4) to provide an up-to-date vegetation map for NECT. The results suggest that the classifications based on NDVI temporal profile metrics have higher accuracies than those based on any other metrics, such as NDVI-derived metrics, or all (NDVI temporal profile metrics + NDVI-derived metrics), or 15 metrics (NDVI temporal profile + Rate of greenup, Rate of senescence, and Integrated NDVI in greenup/integrated NDVI in senescence) for both methods. And among them, unsupervised k-means classification had the highest overall accuracy of 52% and Kappa coefficient of 0.2057. Both unsupervised (k-means) and supervised (minimum distance) methods achieved similar accuracies for the same metrics. The accuracy of IGBP-DIS released land cover map had an overall accuracy of 37% and a Kappa coefficient is 0.1441, and can improve to 46% by decomposing the crop/natural vegetation mosaic to cropland and other natural vegetation types. The results support using unsupervised k-means classification based on NDVI temporal profile metrics to provide an up-to-date vegetation cover classification. However, new effort is necessary in the future in order to improve the overall performance on this issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.