Abstract

Understanding past and future vegetation dynamics is important for assessing the effectiveness of ecological engineering, designing policies for adaptive ecological management, and improving the ecological environment. Here, inter-annual changes in vegetation dynamics during 2000–2020, contributions of climate change (CC) and human activities (HA) to vegetation dynamics, and sustainability of vegetation dynamics in the future were determined in Gannan Prefecture (a typical alpine region in the Tibetan Plateau), China. MODIS-based normalized difference vegetation index (NDVI), air temperature, precipitation, and land cover data were used, and trend analysis, multiple regression residuals analysis, and Hurst exponent analysis were employed. NDVI increased at a rate of 2.4 × 10−3∙a−1 during the growing season, and vegetation improved in most parts of the study area and some sporadically degraded areas also existed. The increasing rate was the highest in the Grain to Green Project (GTGP) areas. The vegetation in the southern and northern regions was mainly affected by CC and HA, respectively, with CC and HA contributions to vegetation change being 52.32% and 47.68%, respectively. The GTGP area (59.89%) was most evidently affected by HA. Moreover, a Hurst exponent analysis indicated that, in the future, the vegetation in Gannan Prefecture would continuously improve. The study can assist in formulating ecological protection and restoration projects and ensuring sustainable development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call