Abstract

AbstractThe advent of 2D hydraulic modelling has improved our understanding of flood hydraulics, thresholds, and dynamic effects on floodplain geomorphology and riparian vegetation at the morphological‐unit scale. Hydraulic concepts of bed shear stress, stream power maxima, and energy (cumulative stream power) have been used to characterize floods and define their geomorphic effectiveness. These hydraulic concepts were developed in the context of reach‐averaged, 1D hydraulic analyses, but their application to 2D model results is problematic due to differences in the treatment of energy losses in 1D and 2D analyses. Here we present methods for estimating total and boundary resistance from 2D modelling of an extreme flood on a subtropical river. Hydraulic model results are correlated with observations of the flood impacts on floodplain geomorphology and the riparian vegetation to identify thresholds and compute variants of flood energy. Comparison of LiDAR data in 2011 and 2014 shows that the 2011 flood produced 2–4 m of erosion on floodplain bars that were previously forested or grass‐covered. Deposition on flood levees, dunes, and chute bars was up to 3.4 m thick. Various hydraulic metrics were trialled as candidates for thresholds of vegetation disturbance. The accuracy of thresholds using metrics extracted at the flood peak (i.e. boundary resistance and stream power maxima) was similar to that using energy as a threshold. Disturbance to forest and grass on vegetated bars was associated with stream powers of >834 W/m2and unit flows of >26 m2/s, respectively. Correlation of the hydraulic metrics with erosion and deposition depths showed no substantial improvement in using flood energy compared to metrics extracted at the flood peak for describing erosion and deposition. The extent of vegetation disturbances and morphological adjustments was limited for this extreme flood, and further 2D studies are needed to compare disturbance thresholds across different environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.