Abstract

The anastomosing system of the upper Narew River consists of a network of interconnected channels. The channels are relatively deep (width/depth ratio 2–10), straight to sinuous, and they lack natural levees. They are characterised by a low water slope and very low stream power. The river is distinctly bedload-dominated and the transport of suspended clastic fines is minimal. Channel deposits consist almost exclusively of medium- to coarse-grained sand. Laterally extensive interchannel areas are flat and covered with peat-forming vegetation. These stable wetlands are flooded for many weeks during high water stages. Except for the channels, the valley fill consists of peat layer reaching 4 m in thickness. The rate of vertical aggradation of the peat deposit is estimated at 1–1.5 mm/year. The radiocarbon dating indicates that the peat layer is predominantly late Holocene in age. The impact of vegetation on the system is overwhelming. Vegetation produces an erosion-resistant peat layer, stabilizes channel banks and slows down the water flow. Vegetation also stimulates aggradation of bedload material on the channel bottom, and contributes to avulsion by blocking the channels. The channel network owes its origin to repeated though infrequent avulsion. Avulsion in the studied system is a small-scale, gradational and slow process. New channels evolve very slowly because of unfavourable hydrologic conditions and the presence of a resistant peat substratum. A new channel eventually intercepts only a part of the flow, while the old channel is still active, though to a limited extent. Although newly formed channels might subsequently be abandoned, long-lasting ones predominate within the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call