Abstract

AbstractReforestation in the Inland Northwest, including northeastern Oregon, USA, is often limited by a dry climate and soil moisture availability during the summer months. Reduction of competing vegetative cover in forest plantations is a common method for retaining available soil moisture. Several spring and summer site preparation (applied prior to planting) herbicide treatments were evaluated to determine their efficacy in reducing competing cover, thus retaining soil moisture, on three sites in northeastern Oregon. Results varied by site, year, and season of application. In general, sulfometuron (0.14 kg ai ha–1 alone and in various mixtures), imazapyr (0.42 ae kg ha–1), and hexazinone (1.68 kg ai ha–1) resulted in 3 to 17% cover of forbs and grasses in the first-year when applied in spring. Sulfometuron+glyphosate (2.2 kg ha–1) consistently reduced grasses and forbs for the first year when applied in summer, but forbs recovered in the second year on two of three sites. Aminopyralid (0.12 kg ae ha–1)+sulfometuron applied in summer also led to comparable control of forb cover. In the second year after treatment, forb cover in treated plots was similar to levels in nontreated plots, and some species of forbs had increased relative to nontreated plots. Imazapyr (0.21 and 0.42 kg ha–1) at either rate, spring or summer 2007, or at lower rate (0.14 kg ha–1) with glyphosate in summer, provided the best control of shrubs, of which snowberry was the dominant species. Total vegetative cover was similar across all treatments seven and eight years after application, and differences in vegetation were related to site rather than treatment. In the first year after treatment, rates of soil moisture depletion in the 0- to 23-cm depth were correlated with vegetative cover, particularly late season soil moisture, suggesting increased water availability for tree seedling growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.