Abstract

The natural abundance of nitrogen (N) stable isotopes (δ15N) has the potential to enhance our understanding of the ecosystem N cycle at large spatial scales. However, vegetation and soil δ15N patterns along climatic and edaphic gradients have not yet been fully understood, particularly for high-altitude ecosystems. Here we determined vegetation and soil δ15N in alpine grasslands on the Tibetan Plateau by conducting four consecutive regional surveys during 2001–2004, and then examined their relationships with both climatic and edaphic variables. Our results showed that both vegetation and soil N in Tibetan alpine grasslands were more 15N-enriched than global averages. Vegetation δ15N did not exhibit any significant trend along the temperature gradient, but decreased significantly with an increase in precipitation amount. In contrast, soil δ15N did not vary with either mean annual temperature or precipitation. Our results also indicated that soil δ15N exhibited a slight increase with clay content, but decreased with soil carbon:nitrogen ratio. A general linear model analysis revealed that variations in vegetation δ15N were dominantly determined by climatic variables, whereas soil δ15N was related to edaphic variables. These results provide clues for potential climatic and edaphic regulations on ecosystem N cycle in these high-altitude regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call