Abstract

To better understand the response of forest vegetation to climate and fire regimes with reference to human activities over the last deglacial period in the Aso Caldera, central Kyushu, southwestern Japan, a 33.9 m long sediment core was examined in order to reconstruct the vegetational and fire history using pollen and charcoal analyses. The results show that a cool temperate broad-leaved deciduous forest, dominated by Quercus (deciduous oaks) with Carpinus and Fagus, prevailed in the Aso Valley from ca. 14.6 ka cal. b.p., indicating warming since the last glacial period. The landscape was presumably covered by a mosaic of deciduous Quercus forests and terrestrial Artemisia communities. Around 12.8–11.7 ka cal. b.p., Quercus dominated the forest and fires occurred frequently. Co-expansion of distinctive Ulmus–Zelkova and Celtis–Aphananthe forests coupled with a progressive retreat of Quercus in the early Holocene could reflect a strengthening of the East Asian summer monsoon under mild and humid climate conditions. Around 8 ka cal. b.p., significant increases in Cyclobalanopsis (evergreen oaks), Castanopsis/Castanea and Podocarpus indicate a further warming, in particular an increased winter temperature. Warm temperate lucidophyllous forests, dominated by Cyclobalanopsis, flourished after 7.3 ka cal. b.p., probably corresponding to the “Holocene Climatic Optimum” interval. Progressive expansion of Quercus at the expense of Cyclobalanopsis began around 6.4 ka cal. b.p. and paralleled an increase in charcoal until ca. 4.8 ka cal. b.p.; this could be evidence of fire disturbance induced by the early-middle Jomon people. The disturbed evergreen forest experienced a temporary recovery but then opened again from 3.6 ka cal. b.p. due to extensive fire deforestation, as suggested by the high charcoal levels during this time. Human exploitation and buckwheat (Fagopyrum) agriculture may have contributed to the opening of the forest, which allowed secondary forests (primarily Pinus and Quercus) and herbaceous communities (mainly Poaceae) to spread. These results are discussed in comparison with other high-resolution pollen data from western Japan to better elucidate the vegetation and fire history over the last deglacial in the Aso Caldera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call