Abstract

The vegetal pole cytoplasm represents a crucial source of maternal dorsal determinants for patterning the dorsoventral axis of the early embryo. Removal of the vegetal yolk in the zebrafish fertilised egg before the completion of the first cleavage results in embryonic ventralisation, but removal of this part at the two-cell stage leads to embryonic dorsalisation. How this is achieved remains unknown. Here, we report a novel mode of maternal regulation of BMP signalling during dorsoventral patterning in zebrafish. We identify Vrtn as a novel vegetally localised maternal factor with dorsalising activity and rapid transport towards the animal pole region after fertilisation. Co-injection of vrtn mRNA with vegetal RNAs from different cleavage stages suggests the presence of putative vegetally localised Vrtn antagonists with slower animal pole transport. Thus, vegetal ablation at the two-cell stage could remove most of the Vrtn antagonists, and allows Vrtn to produce the dorsalising effect. Mechanistically, Vrtn binds a bmp2b regulatory sequence and acts as a repressor to inhibit its zygotic transcription. Analysis of maternal-zygotic vrtn mutants further shows that Vrtn is required to constrain excessive bmp2b expression in the margin. Our work unveils a novel maternal mechanism regulating zygotic BMP gradient in dorsoventral patterning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.