Abstract

With a view to gaining an understanding of the alloying tendency of bimetallic nanoalloy clusters of isoelectronic constituents, we studied the structural and mixing behavior of MnmTcn alloy clusters with m + n = 13 for all possible compositions, using first-principles electronic structure calculations. Our study reports a favorable mixing tendency for the alloy clusters. The average bond lengths of the minimum energy structures show an overall linear variation with concentration, indicating a Vegard's law-like variation for the nanoalloy clusters, though the optimized structures undergo a structural transition from a closed and compact structure for the Mn-rich alloy clusters to an open layered-like structure for the Tc-rich alloy clusters. We work out a continuous and smooth interplay between hybridization and magnetization properties of the alloy clusters, which plays a vital role in the Vegard's law-like variation in their average bond lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.