Abstract

The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Observations of delta Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of theta_cse=8.9 +/- 3.0 mas and a relative flux contribution of f_cse=0.07+/-0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2sigma) with two different regimes over the pulsation cycle of the star, phi=0.0-0.8 and phi=0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. For the first time we have been able to detect in the visible domain a resolved structure around delta~Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.