Abstract
The swept-scan technique (i.e., continuously moving a single-crystal transducer during pulse-echo data acquisition) is used in high-frequency, ultrasonic flow imaging. Relative to the conventional step-scan technique, swept scanning improves the rate of data acquisition and enables near-real-time, high-frequency color flow mapping. However, the continuous transducer movement may have non-negligible effects on accuracy of velocity estimation. This paper introduces a spatial frequency domain (i.e., k-space) approach that quantifies the effects of both lateral and axial motions in a swept scan. It is shown that the k-space representation is equivalent to a Doppler-radio frequency (RF) frequency domain representation, and that transducer movement in the swept-scan technique results in a change in Doppler bandwidth. In addition, a vector velocity estimator is developed based on the proposed k-space approach. Both simulations and flow-phantom experiments were performed to evaluate the performance of the proposed vector velocity estimator. A 45-MHz transducer was scanned at 20 mm/s. The Doppler angle ranged from 29 degrees to 90 degrees, and the flow velocities ranged from 15 to 30 mm/s. The results show that the proposed k-space vector velocity estimator exhibited a mean error of 2.6 degrees for flow-direction estimation, with the standard deviation ranging from 2.2 degrees to 8.2 degrees. In comparison, for the conventional spectral-broadening-based vector velocity estimator ignoring the swept-scan effect, the mean error became 15 degrees and the standard deviations were from 2.7 degrees to 6.6 degrees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.