Abstract

A multiresolution analysis (MRA) on local fields of positive characteristic was defined by Shah and Abdullah for which the translation set is a discrete set which is not a group. In this paper, we continue the study based on this nonstandard setting and introduce vector-valued nonuniform multiresolution analysis (VNUMRA) where the associated subspace V0 of L2(K, ℂM) has an orthonormal basis of the form {Φ (x - λ)}λ∈Λ where Λ = {0, r/N} + 𝒵, N ≥ 1 is an integer and r is an odd integer such that r and N are relatively prime and 𝒵 = {u(n) : n ∈ ℕ0}. We establish a necessary and sufficient condition for the existence of associated wavelets and derive an algorithm for the construction of VNUMRA on local fields starting from a vector refinement mask G(ξ) with appropriate conditions. Further, these results also hold for Cantor and Vilenkin groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.