Abstract
PurposeTo develop and implement an efficient reconstruction technique to improve accelerated multi-channel multi-contrast MRI. Theory and MethodsThe vectorial total generalized variation (TGV) operator is used as a regularizer for the sensitivity encoding (SENSE) technique to improve image quality of multi-channel multi-contrast MRI. The alternating direction method of multipliers (ADMM) is used to efficiently reconstruct the data. The performance of the proposed method (MC-TGV-SENSE) is assessed on two healthy volunteers at several acceleration factors. ResultsAs demonstrated on the in vivo results, MC-TGV-SENSE had the lowest root-mean-square error (RMSE), highest structural similarity index, and best visual quality at all acceleration factors, compared to other methods under consideration. MC-TGV-SENSE yielded up to 17.3% relative RMSE reduction compared to the widely used total variation regularized SENSE. Furthermore, we observed that the reconstruction time of MC-TGV-SENSE is reduced by approximately a factor of two with comparable RMSEs by using the proposed ADMM-based algorithm as opposed to the more commonly used Chambolle–Pock primal-dual algorithm for the TGV-based reconstruction. ConclusionMC-TGV-SENSE is a better alternative than the existing reconstruction methods for accelerated multi-channel multi-contrast MRI. The proposed method exploits shared information among the images (MC), mitigates staircasing artifacts (TGV), and uses the encoding power of multiple receiver coils (SENSE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.