Abstract

An algorithm is reported for the design of a phase-only diffractive optical element (DOE) that reshapes a beam focused using a high numerical aperture (NA) lens. The vector diffraction integrals are used to relate the field distributions in the DOE plane and focal plane. The integrals are evaluated using the chirp-z transform and computed iteratively within the Method of Generalized Projections (MGP) to identify a solution that simultaneously satisfies the beam shaping and DOE constraints. The algorithm is applied to design a DOE that transforms a circularly apodized flat-top beam of wavelength lambda to a square irradiance pattern when focused using a 1.4-NA objective. A DOE profile is identified that generates a 50 lambda x 50 lambda square irradiance pattern having 7% uniformity error and 74.5% diffraction efficiency (fraction of focused power). The diffraction efficiency and uniformity decrease as the size of the focused profile is reduced toward the diffraction limited spot size. These observations can be understood as a manifestation of the uncertainty principle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call