Abstract

BackgroundVector-borne diseases of dogs in Australian Aboriginal communities are relatively unexplored. These dogs represent a unique group with variable ecto- and endo-parasitic burdens, nutritional stresses and a general lack of veterinary intervention. We investigated haemoprotozoal and bacterial pathogen prevalences in relation to erythrocyte and platelet numbers in dogs from North-West New South Wales (N-W NSW) and the Northern Territory (NT; Central Australia).MethodsReal-time PCR (qPCR) amplification of Anaplasma platys, Babesia vogeli, Mycoplasma haemocanis, Candidatus Mycoplasma haematoparvum and Bartonella spp., serological screening for Coxiella burnetii, and Bartonella spp. and haematological analyses were performed on dogs from the two cohorts (96 dogs in total). Brucella suis serology was determined additionally for the N-W NSW cohort.ResultsAnaplasma platys (n = 26 dogs), Babesia vogeli (n = 7), Candidatus Mycoplasma haematoparvum (n = 10 dogs), and Mycoplasma haemocanis (n = 14) were detected in the sample population (n = 96) using qPCR. There were significant associations between (i) A. platys and anaemia (OR 8.7, CI 2.4–31.7; P < 0.001), thrombocytopenia (OR 12.1, CI 3.4–43.2; P < 0.001) and breed (OR 16.1, CI 2.1–121.5; P = 0.007), and (ii) between B. vogeli and anaemia (OR 11.8, CI 2.3–61.6; P = 0.003). Neither protozoal nor bacterial DNA loads, estimated using qPCR, were positively correlated with anaemia or thrombocytopenia. Haemotropic mycoplasmas were not associated with any haematologic abnormality. Four dogs from the NT were seropositive for Coxiella burnetii, while no dogs were seropositive for Brucella suis or to a panel of Bartonella spp. antigens. Despite directed efforts, Bartonella DNA was not detected in blood from any of the cohorts studied. A sample of dogs from the NT recruited specifically for Bartonella α-proteobacteria growth medium enrichment blood culture were also Bartonella PCR negative.ConclusionsVector-borne pathogens occur in dogs free ranging near Aboriginal communities, with higher detection rates in NT than N-W NSW. The preponderant haematologic abnormalities were anaemia and thrombocytopenia, likely attributable to A. platys and B. vogeli infections, but also probably affected by nutritional, parasitic, lactational and environmental stressors. The absence of Bartonella spp. is of importance to the Australian setting, and work needs to be extended to tropical coastal communities where fleas are present as well as ticks. Dogs living in and around Aboriginal communities may provide valuable sentinel information on disease infection status of human public health significance.

Highlights

  • Vector-borne diseases of dogs in Australian Aboriginal communities are relatively unexplored

  • The purpose of the present study was to 1) Determine the prevalence of selected zoonotic pathogens and vector-borne pathogens among free-roaming dogs living in Aboriginal communities in different parts of Australia; 2) Assess potential correlations between anaemia and thrombocytopenia and the Real-time PCR (qPCR) cycling threshold (CT) values for B. vogeli, A. platys and haemotropic mycoplasmas; 3) Determine whether dogs from Central Australia were infected by Bartonella spp

  • To ascribe anaemia or thrombocytopenia to specific pathogen(s) because the ranges of values for packed cell volume (PCV) and platelet counts in ‘control’ dogs were wider than the Veterinary Pathological Diagnostic Services Laboratory (VPDS) reference intervals (RI) established for normal healthy dogs

Read more

Summary

Introduction

Vector-borne diseases of dogs in Australian Aboriginal communities are relatively unexplored. The canine literature is biased towards conditions seen in dogs living in Sydney, Melbourne, Brisbane, Perth, Adelaide and Townsville. For this reason, there is a paucity of information concerning tick-borne disease in Australia, especially diseases transmitted by the brown dog tick, Rhipicephalus sanguineus, which is generally found further inland [1]. Limited recent information concerning tick-borne diseases is largely derived from free-roaming dogs living in close association with a limited number of indigenous Aboriginal communities, mainly in the Northern Territory (NT) [2, 3]. A further study concerns vector-borne diseases of pet dogs from Darwin and Southeast Queensland [4, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.