Abstract

We study the algebra of vector valued multipliers of Banach algebra valued McShane integrable functions. We prove that if X is a commutative Banach algebra, with identity e of norm one, then functions associated with measures of strong bounded variation and the set {L?([a, b],?) e} are vector valued multipliers of McShane integrable functions. We find some necessary and another set of sufficient conditions for a functiong to define a multiplier. In case X satisfies Radon Nikodym property (weak Radon Nikodym property), we study multiplier operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.