Abstract

We consider a class of (ill-posed) optimal control problems in which a distributed vector-valued control is enforced to pointwise take values in a finite set $\mathcal{M}\subset\mathbb{R}^m$. After convex relaxation, one obtains a well-posed optimization problem, which still promotes control values in $\mathcal{M}$. We state the corresponding well-posedness and stability analysis and exemplify the results for two specific cases of quite general interest, optimal control of the Bloch equation and optimal control of an elastic deformation. We finally formulate a semismooth Newton method to numerically solve a regularized version of the optimal control problem and illustrate the behavior of the approach for our example cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.