Abstract
We prove uniform ℓ2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell ^2$$\\end{document}-valued maximal inequalities for polynomial ergodic averages and truncated singular operators of Cotlar type modeled over multidimensional subsets of primes. In the averages case, we combine this with earlier one-parameter oscillation estimates (Mehlhop and Słomian in Math Ann, 2023, https://doi.org/10.1007/s00208-023-02597-8) to prove corresponding multiparameter oscillation estimates. This provides a fuller quantitative description of the pointwise convergence of the mentioned averages and is a generalization of the polynomial Dunford–Zygmund ergodic theorem attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249–2284, 2022).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.