Abstract

Inequalities of the form $$\sum\nolimits_{k = 0}^\infty {|\hat f(m_k )|/(k + 1) \leqslant C||f||_1 } $$ for allf∈H 1, where {m k } are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy's inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms ff atoms and that they actually characterizeB-convexity. It is also shown that for 1<q<∞ and 0<α<∞ the spaceX=H(1,q,γa) consisting of analytic functions on the unit disc such that $$\int_0^1 {(1 - r)^{q\alpha - 1} M_1^q (f,r) dr< \infty } $$ satisfies the previous inequality for vector valued functions inH 1 (X), defined as the space ofX-valued Bochner integrable functions on the torus whose negative Fourier coefficients vanish, for the case {m k }={2k} but not for {m k }={k a } for any α ∈ N.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call