Abstract

Successful transmission of plant pathogens by insects depends on the vector inoculation efficiency and how rapidly the insect can effectively transmit the pathogen to the host plant. The potato psyllid, Bactericera cockerelli (Sulc), has recently been found to transmit "Candidatus Liberibacter solanacearum," a bacterium associated with zebra chip (ZC), an emerging and economically important disease of potato in several parts of the world. Currently, little is known about the epidemiology of ZC and its vector's inoculation capabilities. Studies were conducted in the field and laboratory to 1) assess transmission efficiency of potato psyllid nymphs and adults; 2) determine whether psyllid inoculation access period affects ZC incidence, severity, and potato yield; and 3) determine how fast the psyllid can transmit liberibacter to potato, leading to ZC development. Results showed that adult potato psyllids were highly efficient vectors of liberibacter that causes ZC and that nymphs were less efficient than adults at transmitting this bacterium. It was also determined that inoculation access period had little influence on overall ZC disease incidence, severity, and resulting yield loss. Moreover, results showed that exposure of a plant to 20 adult potato psyllids for a period as short as 1 h resulted in ZC symptom development. Furthermore, it was shown that a single adult potato psyllid was capable of inoculating liberibacter to potato within a period as short as 6 h, thereby inducing development of ZC. This information will help in developing effective management strategies for this serious potato disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call