Abstract
In this paper, we propose a Vector Semiotic Model as a possible solution to the symbol grounding problem in the context of Visual Question Answering. The Vector Semiotic Model combines the advantages of a Semiotic Approach implemented in the Sign-Based World Model and Vector Symbolic Architectures. The Sign-Based World Model represents information about a scene depicted on an input image in a structured way and grounds abstract objects in an agent’s sensory input. We use the Vector Symbolic Architecture to represent the elements of the Sign-Based World Model on a computational level. Properties of a high-dimensional space and operations defined for high-dimensional vectors allow encoding the whole scene into a high-dimensional vector with the preservation of the structure. That leads to the ability to apply explainable reasoning to answer an input question. We conducted experiments are on a CLEVR dataset and show results comparable to the state of the art. The proposed combination of approaches, first, leads to the possible solution of the symbol-grounding problem and, second, allows expanding current results to other intelligent tasks (collaborative robotics, embodied intellectual assistance, etc.).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.