Abstract

The basic motivation of this work is to introduce contextual information into image segmentation tasks by adding spatial coherence to the posterior probabilities corresponding to the classes present in the scene. A method for isotropic and anisotropic diffusion of vector probabilities in general, and posterior probabilities in particular, is introduced. The technique is based on diffusing via coupled partial differential equations restricted to the semi-hyperplane corresponding to probability functions. Both the partial differential equations and their corresponding numerical implementation guarantee that the vector remains a probability vector, having all its components positive and adding to one. Applying the method to posterior probabilities in classification problems, spatial and contextual coherence is introduced before the maximum a posteriori (MAP) decision, thereby improving the classification results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.