Abstract

We deal with the electromagnetic induction in a conductor with 3D distribution of electric conductivity in quasi-static approximation with the focus on theoretical aspects related to the solvability of this problem. We formulate the initial, boundary-value problem of electromagnetic induction in terms of a magnetic vector potential only, first in differential and then in integral forms. We prove that the problem is well posed in the Hadamard sense, that a solution exists, is unique and continuously dependent on data. The fact that no electric scalar potential is employed in the formulation and no gauge condition is imposed on the magnetic vector potential makes the formulation attractive for numerical implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.