Abstract
The phenomenon of vector photochromism was observed in some high-efficient polarization-sensitive materials depending on the radiant exposure of the inducing linearly polarized actinic light. The phenomenon has the purely vector nature because the absorption of the irradiated and unirradiated areas of the material is practically identical when we use unpolarized probing light. However, an essential change in the absorption spectrum was observed under probing the sample by linearly polarized nonactinic light when it passes through an analyzer, and this change depends on the value of radiant exposure. The kinetics of the photoanisotropy induced by linearly polarized actinic light at 457 nm was studied in case of wavelengths of 532 and 635 nm of the probing beam. The noticeable difference in absorbance was observed with increase in radiant exposure from 60 J/cm² up to 250 J/cm² for the used wavelengths of the probing beam. The experimental results obtained in polarization-sensitive material based on the ammonium salt of the azodye Mordant pure yellow in a gelatin matrix are presented. The dependence of the effective anisotropy on the material thickness has been investigated. The mechanism of the phenomenon is discussed. The observed effect can be used for creating dynamic polarization spectral filters controlled by light and the spectrally selective dynamic polarization holographic gratings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.