Abstract

In traditional multiple-input multiple-output (MIMO) receivers, radio frequency (RF) front-ends are exposed to interference as no analog spatial filtering is employed before the digital beamforming stage. Therefore the RF front-end is power-hungry, and analog to digital converters require a high dynamic range. In this paper, we consider an analog beamforming system in case of narrowband signals to cancel interference early in the analog domain, thus reducing the required ADC resolution. In contrast to existing analog beamformers with only phase shifts, our proposed design employs vector modulators where the coefficients can be selected from a set of weights with variable phases and amplitudes. We also propose an efficient and fast Euclidean distance algorithm to determine the analog beamformer coefficients while being suitable for realistic scenarios. Finally, an expression is introduced to estimate the interference rejection achieved by employing the proposed algorithm and a vector modulator in the RF domain. The introduced algorithm leads to considerable improvement in computational complexity by slightly sacrificing interference rejection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.